Duahimpunan a dan b dikatakan ekuivalen, jika n(a) = n(b). Dua himpunan yang tidak kosong dikatakan saling lepas jika kedua himpunan itu tidak mempunyai satu pun anggota yang sama. Dua Himpunan Dikatakan Sama Jika Kedua Himpunan Itu Mempunyai Angota Yang Sama, Baik Banyak Maupun Unsurnya. Biasanya, materi ini diajarkan untuk siswa/i di sekolah
A. Himpunan Kosong. Himpunan kosong adalah himpunan yang tidak mempunyai anggota. Himpunan kosong ditulis dengan notasi {$\$} atau $\varnothing$ Contoh 1. Himpunan bilangan prima antara 7 dan 11. 2. P = {xx < 1, x $\in$ bilangan asli} B. Himpunan Semesta. Himpunan semesta adalah himpunan yang memuat semua objek yang dibicarakan, sehingga himpunan semesta disebut juga semesta pembicaraan. Contoh 1. A = {2, 3, 5, 7, 11} himpunan semesta dari A bisa berupa i. S = bilangan prima, ii. S = bilangan asli, iii. S = bilangan cacah, dan lain-lain. 2. P = {kambing, sapi, kerbau} Himpunan semesta dari P bisa berupa i. S = {hewan berkaki empat} ii. S = {hewan menyusui} iii. S = {hewan pemakan rumput} dan lain-lain. Himpunan semesta dilambangkan dengan $S$. Himpunan semesta digambarkan berupa persegi panjang pada diagram venn. C. Himpunan Tak Berhingga. Himpunan tak berhingga adalah himpunan yang anggotanya tidak terbatas banyaknya, sehingga banyak anggotanya tidak dapat dihitung. Contoh 1. Q = {bilangan asli lebih dari 5} 2. K = {1, 3, 5, 7, . . .} D. Himpunan Berhingga. Himpunan berhingga adalah himpunan yang banyak anggotanya terbatas. Contoh 1. A = {bilangan prima kurang dari 15} 2. P = {6, 7, 9} E. Himpunan Bagian. Himpunan P merupakan himpunan bagian dari Q jika setiap anggota P adalah anggota Q. P himpunan bagian dari Q dituliskan dengan notasi $P \subset Q$. contoh 1. P = {3, 7, 11}, Q = {1, 3, 5, 7, 9, 11, 13} Karena setiap anggota P adalah anggota Q, dengan kata lain semua anggota P termuat di dalam Q, maka himpunan P adalah himpunan bagian dari himpunan Q, ditulis $P \subset Q$ 2. A = {3, 4, 5, 6, 7, 8, 9}, B = {2, 4, 6} Tidak semua anggota B merupakan anggota himpunan A, sehingga himpunan B bukanlah himpunan bagian dari himpunan A. Setiap himpunan kosong $\varnothing$ selalu menjadi himpunan bagian dari suatu himpunan. Jika banyak anggota himpunan A adalah n, maka banyak himpunan bagian dari A adalah $\boxed{2^n}$. Banyaknya himpunan bagian dari A yang banyak anggotanya m adalah $\boxed{C_{m}^{n} = \dfrac{n!}{n-m!.m!}}$ $n! = n.n - 1.n - 2.n - 3..... Contoh soal 1. Jika A = {5, 9, 11}, maka banyak himpunan bagian dari A adalah . . . . Pembahasan Banyak anggota dari himpunan A adalah 3. Berarti n = 3. Himpunan bagian dari A adalah { } → beranggotakan nol anggota himpunan kosong {5}, {9}, {11} → beranggotakan satu anggota. {5, 9}, {5, 11}, {9, 11} → beranggotakan dua anggota. {5, 9, 11} → beranggotakan tiga anggota. Banyaknya himpunan bagian dari A adalah 8. Banyaknya himpunan bagian dengan nol anggota = 1. Banyaknya himpunan bagian dengan satu anggota = 3. Banyaknya himpunan bagian dengan dua anggota = 3. Banyaknya himpunan bagian dengan tiga anggota = 1. Contoh soal 2. Jika P = {a, b, c, d, e, f}, tentukanlah banyak himpunan bagian dari P dan banyaknya himpunan bagian dari P dengan3 anggota. Pembahasan Banyaknya anggota dari himpunan P adalah 6, jadi n = 6. $\bullet$ Banyaknya himpunan bagian $= 2^n$ $= 2^6$ $= 64$. $\bullet$ Banyaknya himpunan bagian dengan 3 anggota $= C_{m}^{n} = \dfrac{n!}{n-m!.m!}$ $= \dfrac{6!}{6-3!.3!}$ $= \dfrac{6!}{3!.3!}$ $= \dfrac{ $= 20$Hubungan Antar HimpunanA. Himpunan Ekuivalen. Dua himpunan dikatakan ekuivalen jika kedua himpunan tersebut memiliki banyak anggota yang sama. Contoh A = {1, 2, 3, 4} → nA = 4. B = {a, b, c, d} → nB = 4 nA = nB sehingga himpunan A ekuivalen dengan himpunan B, dinotasikan dengan $A \sim B$. B. Himpunan Sama. Dua himpunan dikatakan sama jika kedua himpunan mempunyai anggota yang tepat sama. Contoh A = {1, 2, 3, 4} B = {1, 2, 3, 4} Karena anggota himpunan A tepat sama dengan anggota himpunan B, maka himpunan A sama dengan himpunan B, dinotasikan dengan A = B. C. Himpunan Saling Lepas. Dua himpunan dikatakan saling lepas jika kedua himpunan tidak memiliki anggota persekutuan. Contoh P = {2, 3, 4} Q = {6, 7, 8, 9} Himpunan P dan Himpunan Q tidak memiliki anggota yang sama atau anggota persekutuan, sehingga himpunan P dan himpunan Q adalah saling lepas. D. Himpunan Tidak Saling Lepas. Dua himpunan dikatakan tidak saling lepas jika kedua himpunan memiliki anggota persekutuan, tetapi tidak menjadi himpunan bagian. Contoh K = {3, 4, 5, 6} L = {1, 2, 3, 4, 7, 9} Himpunan K dan himpunan L memiliki anggota persekutuan yaitu {3, 4}, tetapi K bukanlah himpunan bagian dari L dan L bukan himpunan bagian dari Operasi HimpunanA. Irisan Himpunan. Irisan himpunan A dan himpunan B adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan A sekaligus anggota himpunan B, atau Himpunan yang anggota-anggotanya merupakan anggota persekutuan dari himpunan A dan himpunan B. $A \cap B = \{xx \in A \; dan \; x \in B\}$ Contoh P = {2, 3, 4, 5, 6} Q = {5, 6, 7, 8, 9, 10} $P \cap Q = \{5, 6\}$ Note $Jika\ P \subset Q \;maka\; P \cap Q = P$ $Jika\ P = Q \;maka\; P \cap Q = P\; atau\; P \cap Q = Q$ B. Gabungan Himpunan. Gabungan himpunan A dan B adalah himpunan yang anggota-anggotanya adalah anggota himpunan A atau anggota himpunan B. $A \cup B = \{xx\in A \; atau \; x\in B\}$ Contoh A = {2, 5, 7, 9} B = {3, 4, 5, 7, 11, 12} $A \cup B = \{2, 3, 4, 5, 7, 9, 11, 12\}$ Banyak anggota dari gabungan dua himpunan $nA \cup B = nA + nB - nA \cap B$ C. Selisih Himpunan. Selisih himpunan $A\ dan\ B$ atau $A - B$ adalah himpunan semua anggota A yang tidak menjadi anggota B. $A - B = \{xx \in A \; dan\; x \notin B\}$ Contoh A = {2, 3, 5, 6, 7} B = {1, 3, 5, 7, 9, 11} $A - B = \{2, 6\}$ D. Jumlah Himpunan. Jumlah himpunan A dan himpunan B adalah himpunan yang anggotanya merupakan gabungan dari himpunan A dan himpunan B, tetapi bukan irisan A dan B. Contoh A = {2, 3, 5, 6, 7} B = {1, 3, 5, 7, 9, 11} $A + B = \{1, 2, 6, 9, 11\}$ E. Komplemen Himpunan. Komplemen Himpunan A adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan $S$ yang bukan A. Komplemen dari himpunan A dinotasikan dengan $A'$ atau $A^c$. $A'\ atau\ A^c = \{xx \notin A \;dan\; x \in S\}$Sifat-sifat Operasi HimpunanA. Sifat Komutatif. $\bullet$ $A \cap B = B \cap A$ $\bullet$ $A \cup B = B \cup A$ B. Sifat Assosiatif. $\bullet$ $A \cap B \cap C = A \cap B \cap C$ $\bullet$ $A \cup B \cup C = A \cup B \cup C$ C. Sifat Distributif. $\bullet$ $A \cap B \cup C = A \cap B \cup A \cap C$ $\bullet$ $A \cup B \cap C = A \cup B \cap A \cup C$ D. Dalil De' Morgan. $\bullet$ $A \cap B^c = A^c \cup B^c$ $\bullet$ $A \cup B^c = A^c \cap B^c$Contoh Soal dan Pembahasan Operasi Himpunan1. Di antara kumpulan-kumpulan berikut, yang merupakan himpunan adalah. . . . A. Kumpulan anak-anak yang rajin B. Kumpulan hewan yang bertubuh besar C. Kumpulan guru-guru yang sabar D. Kumpulan hewan berbulu. Kumpulan yang merupakan himpunan adalah kumpulan hewan berbulu, karena definisinya jelas dan bisa didata anggota himpunannya. Rajin, besar, dan sabar sifatnya relatif dan tidak jelas kategorinya. jawab D. 2. Himpunan bilangan prima ganjil yang kurang dari 15 adalah . . . . A. {2, 3, 5 , 7, 11, 13} B. {3, 5, 7, 9, 11, 13} C. {3, 5, 7, 9, 11, 13, 15} D. {3, 5, 7, 11, 13} Bilangan prima ganjil yang kurang dari 15 adalah {3, 5, 7, 11, 13} → D. 3. {4, 5, 6, 7} jika dinyatakan dengan kata-kata adalah . . . . A. Himpunan bilangan asli antara 4 dan 7 B. Himpunan bilangan asli antara 3 dan 8 C. Himpunan bilangan asli dari 3 sampai 8 D. Himpunan bilangan asli dari 4 sampai 8 Himpunan bilangan asli antara 4 dan 7 adalah {5, 6}. Himpunan bilangan asli antara 3 dan 8 adalah {4, 5, 6, 7}. Himpunan bilangan asli dari 3 sampai 8 adalah {3, 4, 5, 6, 7, 8}. Himpunan bilangan asli dari 4 sampai 8 adalah {4, 5, 6, 7, 8}. Jawab B. 4. {3, 5, 7, 9, 11} jika dinyatakan dengan notasi pembentuk himpunan adalah . . . . A. {xx bilangan bulat} B. {xx bilangan asli} C. {x3 ≤ x ≤ 11, x $\in$ bilangan bulat} D. {x3 ≤ x ≤ 11, x $\in$ bilangan ganjil} {3, 5, 7, 9, 11} adalah bilangan ganjil dari 3 sampai 11. Jika dituliskan dengan notasi pembentuk himpunan menjadi {x3 ≤ x ≤ 11, x $\in$ bilangan ganjil} → D. 5. Diketahui A = {y2 < y ≤ 6, y $\in$ bilangan cacah}. Jika dinyatakan dengan mendaftar anggota-anggota dari A adalah . . . . A. {2, 3, 4, 5, 6} B. {3, 4, 5} C. {3, 4, 5, 6} D. {2, 3, 4, 5} 2 $\notin$ A, tetapi 6 adalah anggota A, sehingga anggota A adalah {3, 4, 5, 6} → C. 6. Diketahui P = {xx < 8, x $\in$ bilangan asli}, maka banyak anggota himpunan P atan nP adalah . . . . A. 7 B. 8 C. 9 D. 10 P = {1, 2, 3, 4, 5, 6, 7}, banyak anggotanya adalah 7. Jadi nP = 7 → A. 7. Di antara himpunan-himpunan berikut, yang merupakan himpunan kosong adalah . . . . A. {bilangan prima antara 7 dan 11} B. {bilangan genap habis dibagi 3} C. {bilangan kelipatan 2 dan 5} D. {bilangan cacah kurang dari 2} Tidak ada bilangan prima antara 7 dan 11. Jadi bilangan prima antara 7 dan 11 adalah himpunan kosong. → A. 8. Diketahui A = {4, 6, 8}, B = {1, 2, 3, 4, 6}, C = {0, 2, 4, 6, 8, 10}. Pernyataan yang benar adalah . . . . $A.\; A \subset B$ $B.\; A \subset C$ $C.\; B \subset C$ $D.\; C \subset B$ Setiap anggota A adalah anggota C, maka $A \subset C$ → B. 9. Diketahui P = {a, b, c, d, e, f, g}, banyak himpunan bagian dari P yang mempunyai tiga anggota adalah . . . . A. 10 B. 15 C. 30 D. 35 $n = 7, m = 3$ $C_{3}^{7} = \dfrac{7!}{7 - 3!.3!}$ $= \dfrac{7!}{4!.3!}$ $= \dfrac{ $= 35$ Jadi banyak himpunan bagian dari P yang mempunyai tiga anggota adalah 35 buah. → D. 10. Diketahui A = {x2 ≤ x < 6} dan B = {x4 ≤ x ≤ 8}. Maka $A \cap B$ adalah . . . . A. {3, 4} B. {3, 4, 5} C. {4, 5} D. {4, 5, 6} A = {2, 3, 4, 5} B = {4, 5, 6, 7, 8} $A \cap B = \{4, 5\}$ → C. 11. Diketahui P = {faktor dari 18} dan Q = {faktor dari 12}. Maka $P \cup Q$ adalah . . . . A. {1, 2, 3, 4, 6, 12} B. {1, 2, 3, 4, 9, 12, 18} C. {1, 2, 3, 4, 6, 9, 12, 18} D. {1, 2, 3, 4, 5, 6, 7, 9, 12, 18} Faktor dari 18 1 x 18 2 x 9 3 x 6 Faktor dari 18 adalah {1, 2, 3, 6, 9, 18} P = {1, 2, 3, 6, 9, 18} Faktor dari 12 1 x 12 2 x 6 3 x 4 Faktor dari 12 adalah {1, 2, 3, 4, 6, 12} Q = {1, 2, 3, 4, 6, 12} $P \cup Q$ = {1, 2, 3, 4, 6, 9, 12, 18} → C. 12. Diketahui $nA = 20$, $nB = 23$, dan $nA \cap B = 15$, maka n$A \cup B$ = . . . . A. 27 B. 28 C. 30 D. 32 $nA \cup B = nA + nB - nA \cap B$ $nA \cup B = 20 + 23 - 15$ $nA \cup B = 28$ → B. 13. Diketahui himpunan K = {1 < x ≤ 11, x bilangan ganjil}. Banyaknya himpunan bagian dari himpunan K yang mempunyai 3 anggota adalah . . . . A. 4 B. 10 C. 20 D. 35 [Soal UN 2018] K = {3, 5, 7, 9, 11} n = 5, m = 3 $C_{3}^{5} = \dfrac{5!}{5 - 3!.3!}$ $= \dfrac{5!}{5 - 3!.3!}$ $= \dfrac{5!}{2!.3!}$ $= \dfrac{ $= 10$ → B. 14. Diketahui himpunan semesta S adalah himpunan bilangan cacah yang kurang dari 20. A adalah himpunan bilangan prima antara 3 dan 20. B adalah himpunan bilangan asli antara 2 dan 15. Komplemen dari $A \cap B$ adalah . . . . A. {0, 1, 2, 5, 7, 11, 13, 15, 16, 18} B. {3, 4, 6, 8, 9, 10, 12, 14, 17, 19} C. {3, 4, 6, 8, 9, 10, 12, 14, 15, 17, 19} D. {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19} [Soal UN 2018] S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} A = {5, 7, 11, 13, 17, 19} B = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} $A \cap B = {5, 7, 11, 13}$ $A \cap B'$ adalah himpunan S yang bukan $A \cap B$. Jadi $A \cap B'$ = {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19} → E. 15. Wawancara dari 40 orang pembaca majalah diketahui 5 orang suka membaca majalah tentang politik dan olah raga, 9 orang yang tidak menyukai keduanya. Banyak pembaca yang menyukai majalah olah raga sama dengan dua kali banyak pembaca yang menyukai majalah politik. Banyak pembaca yang menyukai majalah politik adalah . . . . A. 8 orang B. 10 orang C. 12 orang D. 14 orang [Soal UN 2018] Misalkan banyak pembaca yang menyukai politik $= x$, maka banyak pembaca yang menyukai olah raga $= 2x$. Pembaca yang suka membaca majalah politik saja $= x - 5$. Pembaca yang suka membaca majalah olah raga saja $= 2x - 5$. Karena jumlah pembaca seluruhnya adalah 40 orang atau nS = 40, maka $x - 5 + 5 + 2x - 5 + 9 = 40$ $3x + 4 = 40$ $3x = 40 - 4$ $3x = 36$ $x = 12$ Banyak pembaca yang menyukai majalah politik $= x = 12$ → C. 16. Jika A = {semua faktor dari 6}, maka banyak himpunan bagian dari A adalah . . . . A. 4 B. 8 C. 9 D. 16 [Soal UN] Faktor dari 6 1 x 6 2 x 3 Jadi, faktor dari 6 adalah {1, 2, 3, 6} A = {1, 2, 3, 6} nA = 4 Banyak himpunan bagian dari $A = 2^4 = 16$ → D. 17. Diketahui A = {xx < 8, x $\in$ C} dan B = {x3 < x ≤ 9, x $\in$ B}, $A \cap B$ adalah . . . . A. {4, 5, 6, 7} B. {4, 5, 6, 7, 8} C. {3, 4, 5, 6, 7} D. {3, 4, 5, 6, 7, 8} [Soal UN] A = {0, 1, 2, 3, 4, 5, 6, 7} B = {4, 5, 6, 7, 8, 9} $A \cap B = \{4, 5, 6, 7\}$ → A. 18. Dari 40 orang anggota karang taruna, 21 orang gemar tenis meja, 27 orang gemar bulutangkis, dan 15 orang gemar tenis meja dan bulu tangkis. Banyak anggota karang taruna yang tidak gemar tenis meja dan bulutangkis adalah . . . . A. 6 orang B. 7 orang C. 12 orang D. 15 orang [Soal UN] Perhatikan gambar ! Yang gemar tenis meja saja = 21 - 15 = 6 orang. Yang gemar bulutangkis saja = 27 - 15 = 12 orang. Yang gemar tenis meja dan bulutangkis = 15 orang. Yang tidak gemar tenis meja dan bulutangkis = n orang. Karena jumlah seluruh siswa = 40 orang atau nS = 40, maka $6 + 15 + 12 + n = 40$ $33 + n = 40$ $n = 40 - 33$ $n = 7\ orang$ → B. 19. Dalam sebuah kelas tercatat 21 siswa gemar olah raga basket, 19 siswa gemar sepak bola, 8 siswa gemar basket dan sepak bola, serta 14 siswa tidak gemar olah raga. Banyak siswa dalam kelas tersebut adalah . . . . A. 46 siswa B. 54 siswa C. 62 siswa D. 78 siswa [Soal UN] Lihat gambar ! Yang gemar basket saja = 21 - 8 = 13 orang. Yang gemar sepak bola saja = 19 - 8 = 11 orang. Yang gemar basket dan sepak bola = 8 orang. Yang tidak gemar olah raga = 14 orang. $nS = 13 + 11 + 8 + 14$ $nS = 46\ orang$ → A. 20. Dari 80 orang siswa yang disurvei tentang kegemaran menonton acara olah raga di televisi, diperoleh 48 orang gemar menonton volley, 42 orang gemar menonton basket, dan 10 orang tidak gemar acara tersebut. Banyak siswa yang hanya gemar menonton basket adalah . . . . A. 22 orang B. 28 orang C. 32 orang D. 36 orang [Soal UN] Lihat gambar ! nS = 80 Misalkan yang gemar menonton volley dan basket = n, maka yang gemar menonton volley saja = 48 - n. yang gemar menonton basket saja = 42 - n. yang tidak gemar menonton volley dan basket = 10. $nS = 48 - n + n + 42 - n + 10$ $80 = 100 - n$ $n = 100 - 80$ $n = 20$ yang gemar menonton basket saja $= 42 - 20 = 22\ orang$ → A. Demikianlah Soal dan Pembahasan Operasi Himpunan. Selamat belajar !SHARE THIS POST
Duahimpunan dikatakan sama jika kedua himpunan mempunyai anggota yang tepat sama. Perhatikan himpunan-himpunan berikut! P = {4, 5, 7} Q = {7, 4, 5} Pada himpunan-himpunan tersebut dapat diketahui bahwa anggota himpunan P termuat dalam himpunan Q, demikian juga sebaliknya. Jadi, himpunan P dan Q disebut dua himpunan sama, dapat ditulis P =Q.

Contents1 Pengertian Himpunan Ekuivalen Serta Contoh Pengertian Himpunan Contoh Soal Himpunan Share thisUntuk artikel kali ini kita akan membahas bersama mengenai ekuivalen perlu dijelaskan secara detail, sehingga pembaca dapat memahami secara keseluruhan yang menyangkut pengertian himpunan ekuivalen dan contoh himpunan ekuivalen. Untuk lebih jelasnya lagi silahkan simak terus pembahasan di bawah Himpunan EkuivalenAda sebuah kulkas/lemari es yang mana di dalamnya terdapat 3 jenis minuman yakni Teh, Sirup dan Susu yang juga terdapat 3 jenis buah-buahan seperti Apel, Jeruk dan Mangga. Sekarang kita ibaratkan beberapa jenis minuman tersebut adalah himpunan A sedangkan untuk jenis-jenis buah adalah himpunan B, jadi untuk penulisannya adalah sebagai berikutA = { Teh, Sirup, Susu }B = Apel, Jeruk dan Mangga}Sekarang coba anda perhatikan pada kedua himpunan diatas, apakah kedua di antaranya ada yang sama? Di lihat dari kedua himpunan tersebut yang sama ialah yang memiliki banyak anggotanya, atau dengan kata lain sama-sama 3, yang dapat di tulis nA = 3 dan nB = 3, jadi nA = nB = 3.“Himpunan yang memiliki banyak anggota memiliki pengertian sebagai himpunan ekuivalen atau himpunan ekuipoten”“Himpunan ekuivalen merupakan himpunan yang unsurnya tidak sama, akan tetapi memiliki banyak anggota yang sama.”“Sedangkan untuk pengertian dari Himpunan ekuivalen ialah dua himpunan yang mempunyai jumlah anggota sama.”Contoh Soal Himpunan EkuivalenDiketahuiHimpunan A = {1, 2, 3}, B = a, b, c}, dan E = {1, ½ , 1/3 , ¼ } mana yang ekuivalen di antara tiga himpunan tersebut?JawabnA = 3, nB = 3, dan nC = 4Jadi nA = nB = 3, maka himpunan A ekuivalen BUntuk lebih jelasnya dari jawaban di atas dapat di uraiakan sebagai berikut“Yang di katakan sebagai himpunan ekuivalen adalah Himpunan A dan B, yang mana jika anggota Himpunan A dan B sama-sama banyak”“Dapat di katakan ekivalen/ sederajad dari Dua himpunan A dan B, yakni banyaknya anggota Eleman pada himpunan A sama dengan banyaknya anggota elemen himpunan B.”Demikian ulasan yang bisa kita pelajari bersama tentang Pengertian Himpunan Ekuivalen Serta Contoh Soalnya Lengkap ini. Semoga dengan adanya ulasan ini bisa membantu dan menambah wawasan Anda dan saya ucapkan terima kasih sudah membaca ulasan ini.

Ketigaentitas di atas tidak memiliki anggota yang sama, masing-masing memiliki anggota himpunannya sendiri-sendiri. Dengan demikian, hubungan antar himpunan A, B, dan C adalah himpunan yang saling lepas. Perhatikan dua himpunan berikut!perhatikan dua himpunan berikut ini ! A = {2, 3, 5, 7, 9} B = {2, 3, 5, 8, 11} A. Dua Himpunan yang Sama Perhatikan contoh dibawah ini Ada dua himpunan yang memiliki anggota yang sama, yaitu himpunan A dan B. A = {u,b,i} dan B = {i,b,u} , maka u ∈ A dan u ∈ B, b ∈ A dan b ∈ B, serta i ∈ A dan i ∈ B. Dari himpunan A dan B, setiap anggota A sama dengan anggota pada himpunan B, maka kedua himpunan itu dikatakan sama. Jadi, dua himpunan A dan B sama jika setiap anggota A juga menjadi anggota B dan juga sebaliknya setiap anggota B juga menjadi anggota A. Yang perlu kita ketahui adalah himpunan bagian ditandai dengan lambang ⊂. Misalkan A = {u,b,i}, maka {u} ⊂ A, dapat dibaca bahwa himpunan tersebut memiliki anggota atau beranggotakan u dan ini yang disebut dengan himpunan bagian dari himpunan A, begitu juga dengan b dan juga i merupakan anggota dari himpunan A. Mari kita perhatikan gambar dibawah ini! Dari gambar di atas bisa kita ketahui bahwa anggota dari himpunan A dan B adalah sama. B. Himpunan Bagian Himpunan bagian adalah himpunan yang semua anggotanya ada di dalam himpunan tertentu. Misalkan seperti pada gambar dibawah ini Dari gambar diagram venn di atas, bisa kita liat bahwa B ⊂ A, namun A ⊄ B, tapi A ⊃ B ⊃ dibaca memuat. Jadi semua anggota B adalah anggota A, jadi B ⊂ A. C. Dua Himpunan Ekuivalen Dua Himpunan yang dapat berkorespondensi satu-satu dikatakan dua himpunan yang saling ekuivalen. Jadi, dua himpunan yang ekuivalen berarti banyak anggotanya sama. Jika dua himpunan itu A dan B maka nA = nB. Notasi untuk menulis ekuivalen yaitu ∼. Jadi kalau A ekuivalen B dapat di tulis seperti ini A ∼ B. Contoh diagram venn nya seperti dibawah ini Jadi berdasarkan gambar diagram venn diatas, maka dapat kita lihat bahwa kedua himpunan itu tidak mempunyai anggota sekutu namun kedua himpunan itu mempunyai anggota yang banyaknya sama. Sehingga dapat dikatakan kedua himpunan itu berkorespondensi satu-satu artinya dapat dipasangkan satu-satu. D. Himpunan yang Saling Lepas Mari kita perhatikan gambar diagram venn di atas, S = {0,1,2,3} A = {1,2} B = {3} Adakah anggota A yang menjadi anggota B? Atau apakah ada anggota B yang menjadi anggota A? Kalau kedua himpunan tidak memiliki anggota sekutu maka dua himpunan tersebut dikatakan saling lepas. Arti dari sekutu adalah anggota yang dipunyai kedua himpunan yang dimaksud. Hal itu terlihat pada gambar diatas, bahwa anggota A dan B tidak mempunyai anggota sekutu, maksudnya tidak satupun anggota yang dipunyai bersama oleh kedua himpunan itu. E. Himpunan yang Saling tidak Lepas Seperti yang kita perhatikan pada gambar di atas, itulah gambar diagram venn dari dua himpunan yang saling tidak lepas. S = {1,2,3} A = {1,2} B = {2,3} 2 ∈ A sekaligus ∈ B 1 ∈ A, 1 ∈ B 3 ∈ B, 3 ∈ A Jadi dapat kita lihat bahwa Dari dua himpunan A dan B, A ⊄ B dan sebaliknya, maka Ada anggota sekutu anggota yang dipunyai bersama oleh A dan B Ada anggota A yang bukan anggota B Ada anggota B yang bukan anggota A. Dua himpunan itu dikatakan tidak saling lepas. Selain itu juga dua himpunan yang sama juga dikatakan tidak lepas himpunan bagian juga dikatakan tidak saling lepas. Untuk memperdalam pemahaman kita tentang, mencantumkan satu contoh soal dibawah 1 Dari himpunan-himpunan berikut, manakah yang ekuivalen? a {nama-nama hari dalam seminggu} b {bilangan asli kurang dari 10}
Untukmengerjakan soal ini kita harus ingat bahwa bilangan cacah merupakan bilangan bulat yang dimulai dari nol bilangan asli merupakan bilangan bulat positif dimulai dari 1 dan bilangan ganjil merupakan bilangan yang bukan kelipatan 2 atau bilangan yang tidak habis dibagi dua pada opsi a. Kita diminta himpunan bilangan asli kurang dari 0
MatematikaALJABAR Kelas 7 SMPHIMPUNANPengertian dan Keanggotaan Suatu HimpunanManakah himpunan-himpunan berikut yang ekuivalen? a. A = {1,3,5, 7}, B = {4, 6, 8, 10} b. C = {bilangan ganjil} , D = {bilangan genap} c. T = {huruf pembentuk kata "ISAP"}, K = {huruf pembentuk kata "PINTAR"}Pengertian dan Keanggotaan Suatu HimpunanHIMPUNANALJABARMatematikaRekomendasi video solusi lainnya0137{y 7 < y <= 21, y e himpunan bilangan ganjil} dinyataka...0115Jika T = {huruf pembentuk kalimat MATEMATIKA MENYENANGKAN...0117Diketahui S={bilangan asli kurang dari 10} dan A={2,4,6...0033H adalah himpunan faktor dari 12 . Banyaknya anggota himp...Teks videoHaikal Friends di sini ada soal yaitu manakah himpunan-himpunan berikut yang ekuivalen Nah misalkan ada dua himpunan yaitu a dan b maka dua himpunan a dan b dikatakan ekuivalen apabila banyak anggota himpunan a = banyak anggota himpunan b notasinya tulis yaitu na = NB Nah di sini berarti kita yang pertama yaitu himpunan a anggotanya adalah 1 3 5 dan 7 lalu himpunan b anggotanya adalah 4 6, 8 dan 10 maka n a nya adalah anggota himpunan a ada 4 lalu n b nya adalah anggota himpunan b nya juga4 sehingga n a = n b jadi himpunan a dan himpunan B ini merupakan himpunan yang ekuivalen lalu selanjutnya yang B Himpunan c merupakan anggota bilangan ganjil dan himpunan B merupakan bilangan genap na misalkan bilangan ganjil nya adalah 1 3 5 7 9 dan seterusnya lalu himpunan bilangan genap nya yaitu 2 4 6 8 10 dan seterusnya. Nah misalkan dari 100 bilangan bilangan ganjil adalah 50 dan bilangan genap adalah 50 sehingga jumlah anggota bilangan ganjil = jumlah anggota bilangan genap Nah kita misalkan disini n c-nya adalah 5 laluDe nya adalah 5 maka n c = n d sehingga Himpunan c dan himpunan D dikatakan ekuivalen lalu selanjutnya himpunan t huruf pembentuk kata isap berarti huruf pembentuk kata isap yaitu ada yg Lalu ada es Lalu ada a Lalu ada P lalu himpunan K anggotanya adalah huruf pembentuk kata pintar kata pintar dibentuk dari huruf p i n t a dan r maka kita ketahui di sini jumlah anggota himpunan t ada 4 lalu jumlah himpunan anggota k ada 5 maka disini ente tidak sama dengan n k maka himpunandan himpunan K tidak dikatakan ekuivalen lalu yang dikatakan himpunan yang ekuivalen adalah himpunan a dan himpunan B serta Himpunan c dan himpunan D sekian sampai jumpa di soal selanjutnya
Selanjutnya sebelum mengetahui himpunan bilangan cacah kurang dari 5, yuk simak dahulu penjelasan tentang konsep himpunan yang dikutip dari buku "Pasti Bisa Matematika untuk SMP/MTs Kelas VII" oleh Tim Ganesha Operation berikut ini. Himpunan adalah kumpulan benda atau objek-objek yang telah didefinisikan dengan jelas. Contoh: – dalam membahas mengenai ekuivalen perlu penjelasan yang detail sehingga pembaca dapat memahami secara luas di antaranya seperti pengertian himpunan ekuivalen dan contoh himpunan ekuivalen, silahkan anda simak penjelasan lengkapnya dibawah Himpunan EkuivalenAda sebuah kulkas/lemari es yang mana di dalamnya terdapat 3 jenis minuman yakni Teh, Sirup dan Susu yang juga terdapat 3 jenis buah-buahan seperti Apel, Jeruk dan sekarang kita ibaratkan beberapa jenis minuman tersebut adalah himpunan A sedangkan untuk jenis-jenis buah adalah himpunan B, jadi untuk penulisannya adalah sebagai berikutA = { Teh, Sirup, Susu }B = Apel, Jeruk dan Mangga}sekarang coba anda perhatikan pada kedua himpunan diatas, apakah kedua di antaranya ada yang sama?di lihat dari kedua himpunan tersebut yang sama ialah yang memiliki banyak anggotanya, atau dengan kata lain sama-sama 3, yang dapat di tulis nA = 3 dan nB = 3, jadi nA = nB = 3.“himpunan yang memiliki banyak anggota memiliki pengertian sebagai himpunan ekuivalen atau himpunan ekuipoten”“Himpunan ekuivalen merupakan himpunan yang unsurnya tidak sama, akan tetapi memiliki banyak anggota yang sama.” “Sedangkan untuk pengertian dari Himpunan ekuivalen ialah dua himpunan yang mempunyai jumlah anggota sama.”Contoh Soal Himpunan EkuivalenDiketahui Himpunan A = {1, 2, 3}, B = a, b, c}, dan E = {1, ½ , 1/3 , ¼ } mana yang ekuivalen di antara tiga himpunan tersebut?JawabnA = 3, nB = 3, dan nC = 4Jadi nA = nB = 3, maka himpunan A ekuivalen BUntuk lebih jelasnya dari jawaban di atas dapat di uraiakan sebagai berikut“Yang di katakan sebagai himpunan ekuivalen adalah Himpunan A dan B, yang mana jika anggota Himpunan A dan B sama-sama banyak”“Dapat di katakan ekivalen/ sederajad dari Dua himpunan A dan B, yakni banyaknya anggota Eleman pada himpunan A sama dengan banyaknya anggota elemen himpunan B.”Hanya itu saja yang dapat saya sampaikan mengenai himpunan ekuivalen dan contoh himpunan ekuivalen dilengkapi dengan contoh soal serta penjelasannya. semoga dapat bermanfaat dan menambah pengetahuan bagi penulis dan pembaca. terima Juga Pengertian Zona Laut Berdasarkan Kedalamannya Beserta ContohnyaPengertian & Hakikat – Tujuan – Ciri “Pembangunan Berwawasan Lingkungan Lengkap”Bacaan Surat Al Fatihah dan Terjemahanya Lengkap Pembahasan Himpunan pasangan berurutan dikatakan fungsi apabila memenuhi syarat bahwa setiap anggota himpunan pertama harus berpasangan tepat satu dengan anggota himpunan kedua. anggota himpunan pertama yaitu memiliki pasangan di himpunan kedua dan yang artinya himpunan bukan merupakan fungsi. anggota himpunan pertama yaitu memiliki pasangan Quipperian! Setelah kamu paham dengan Himpunan pada artikel sebelumnya, kamu perlu belajar lebih lagi tentang tindak lanjut Himpunan, seperti Hubungan Dua Himpunan, Dua Himpunan Sama, Dua Himpunan Ekuivalen, Dua Himpunan Lepas Saling Asing. Yuk mulai Belajar! Hubungan Dua Himpunan Tiap dua himpunan mempunyai hubungan, di antaranya; Himpunan yang satu merupakan himpunan bagian yang lain Dua himpunan saling asing saling lepas 3. dua himpunan berpotongan atau 4. dua himpunan ekuivalen Berikut ini akan dibahas tiap-tiap hubungan dua himpunan tersebut. a. Himpunan Bagian Subset Himpunan Bagian Perhatikan contoh berikut ini. Misalkan A = {1, 5} dan B = {0, 1, 2, 3, 4, 5}. Perhatikan bahwa 1 dan 5 masing-masing merupakan anggota dari himpunan A dan juga merupakan anggota dari himpunan B. Dapat dikatakan bahwa setiap anggota himpunan A merupakan anggota himpunan B pula. Hal seperti ini dikatakan bahwa himpunan A merupakan himpunan bagian dari himpunan B. Pengertian himpunan bagian ini secara formal didefinisikan sebagai berikut “Himpunan A adalah himpunan bagian dari himpunan B ditulis A B}, jika setiap anggota A merupakan anggota B. Aatau dapat ditulis sebagai; A B jhj x, xAxB” Perhatikan contoh berikut Misalkan D = {a, e, i, u, o}, yaitu himpunan semua vocal dalam abjad Latin dan E = {a, b, c, d, . . ., z}, yaitu himpunan semua abjad Latin, maka D E. Dan jika F adalah himpunan semua kosonan dalam abjad Latin, maka F E pula. Apabila A = {x│x bilangan asli} dan P = {2, 3, 5, 7, . . .}, yaitu himpunan semua bilangan prima, maka P A. Dan jika B = { x│x bilangan bulat}, maka A B dan P B. Jika X = {t│t segiempat} dan Y = {r│r jajargenjang}, maka Y X. Dan apabila Z = {z│z belah ketupat}, maka Z Y dan Z X. Benarkah bahwa A A, untuk setiap himpunan A? Memperhatikan Definisi maka setiap anggota dari himpunan A mesti merupakan anggota dari himpunan A. Sehingga pastilah benar bahwa A A. Selanjutnya dikatakan bahwa A adalah himpunan bagian tak sejati improper subset dari A Benarkah bahwa Ø A, untuk setiap himpunan A? Menurut Definisi Ø A jika dan hanya jika x, x Ø x A. Karena x Ø adalah suatu pernyataan yang bernilai salah, sebab Ø adalah himpunan yang tidak mempunyai anggota satupun, Maka kalimat implikasi x Ø x A bernilai benar, sebab pendahulu/antesendennya bermnilai salah. Sehingga kalimat “ x, x Ø x A” bernilai benar, dengan denikian Ø A benar. Seperti juga pada contoh Ø merupakan himpunan bagian tak sejati dari A pula. Himpunan bagian dari A, selain Ø dan A jika ada disebut himpunan bagian sejati proper subset dari A. Selanjutnya dalam kegiatan belajar ini, jika tidak ada keterangan apa-apa, maka yang dimaksud kata-kata “himpunan bagian” adalah mencakup himpunan bagian sejati maupun himpunan bagian tak sejati. Semua himpunan bagian dari {a, b, c} adalah { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, adan {a, b, c}. Jadi banyaknya himpunan bagian dari {a, b, c} adalah 8. Berapakah banyaknya himpunan bagian dari {a, b, c, d}? A B dapat pula dibaca “A termuat dalam B” yang sama artinya dengan “B memuat A” yang diberi simbol dengan “B A” B is a subset of A. Apabila A bukan himpunan bagian dari B, atau A tidak termuat dalam B, disimbolkan dengan A B. Dalam suatu pembahasan kadang-kadang kita harus membatasi diri, agar pembahasan kita terfokus pada permasalahan yang dibahas. Dalam pembahasan himpunan, kita perlu menetapkan suatu himpunan yang anggota-anggota atau himpunan bagian-himpunan bagiannya merupakan sumber pembahasan. Himpunan seperti ini disebut Himpunan Semesta atau Semesta Pembicaraan Universal Set, yang bisa diberi lambang dengan huruf S atau U. Himpunan semesta yang dfitetapkan tergantung pada permasalahan yang sedang dibahas. Misalnya, dalam suatu keadaan mungkin himpunan semua bilangan rasiaonal sebagai himpunan semesta, dalam keadaan lain mungkin himpunan semua orang di Palu, himpunan semua segitiga, himpunan semua segi empat, atau himpunan semua titik pada suatu bidang datar didefinisikan sebagai himpunan semesta. Suatu himpunan dapat digambarkan dalam suatu diagram yang biasa disebut diagram Venn-Euler atau ada yang hanya menyebut diagram Venn saja. Himpunan semesta biasa digambarkan sebagai persegi panjang dan himpunan bagian-himpunan bagian digambarkan sebagai kurva-kurva tertutup sederhana. Kamu Masih Takut dengan Matematika? Kamu hanya Butuh Les Matematika Online, kok! Dua Himpunan Sama Dua himpunan A dan B dikatakan sama ditulis A = B jika setiap anggota A merupakan anggota B, dan setiap anggota B merupakan anggota A pula. Dapat ditulis Atau ditulis lebih singkat menjadi A = B jhj A B & B A. Hal ini secara formal dinyatakan sebagai definisi berikut ini Himpunan-himpunan A dan B dikatakan sama ditulis A = B jika A merupakan himpunan bagian dari B dan B merupakan himpunan bagian dari A. Jika tidak demikian, dikatakan A tidak sama dengan B ditulis A ≠ B. Contoh 1 Jika A = {1, 2, 3, 4} dan B = {4, 2, 1, 3}, maka A = B 2 Jika A = {x│x bilangan asli} dan B = {y│y bilangan bulat positif}, maka A = B 3 Jika P = {1, 2} dan K = { x│x2 – 3x + 2 = 0 dan x bilangan real}, maka P = K 4 Jika M = { x│x huruf pembentuk kata “matematika”} dan N = {k, e, t, a, m, i}, maka M = N Dua Himpunan Ekuivalen Dua himpunan berhingga A dan B dengan nA = nB, yaitu banyaknya anggota A sama dengan banaknya anggota B, maka dkatakan bahwa himpunan A ekuivalen dengan himpunan B ditulis A ~ B. Misalnya, A = {1, 3, 5, 7, 9} dan B = {a, b, c, d, e} adalah dua himpunan yang ekuivalen, atau ditulis A ~ B. Apabila himpunan M sama dengan himpunan N, maka M ~ N, tetapi tidak sebaliknya. Perhatikan bahwa ketentuan tersebut hanya dikhususkan untuk himpunan-himpunan yang berhingga saja. Untuk himpunan-himpunan sehingga yang ekuivalen didefinisikan dengan menggunakan pengertian korespondensi satu-satu yang akan dibahas pada materi berikutnya. Tips Menghapal Rumus Matematika dengan Cepat dan Tepat! Dua Himpunan Lepas Saling Asing Dua himpunan yang tidak kosong A dan B dikatakan saling asing/lepas ditulis A//B dan dibaca A lepas dengan B jika dua himpunan itu tidak mempunyai anggota persekutuan, atau setiap anggota A bukan anggota B dan setiap anggota B bukan anggota A. Contoh Jika A = {1, 2, 3, 4, 5} dan B = {7, 8, 9, 16}, maka A//B Jika P = {k, e, t, a, m} dan T = {p, u, r, I, n, g}, maka P//T Jika M = {1, 2, 3, 4, 5, 6} dan N = {x│x = 3 dan x bilangan asli}, maka M tidak lepas dengan N Operasi-Operasi pada Himpunan Apabila diketahui dua himpunan atau lebih, kita dapat membentuk himpunan baru dengan mengoperasikan himpunan-himpunan yang diketahui tersebut. Operasi-operasi pada himpunanhimpunan adalah Irisan , gabungan , selisih – dan komplemen …C , atau …1 Penulis Sritopia
Makadapat disimpulkan bahwa P = Q, karena kedua himpunan memiliki anggota yang sama, yakni (3, 5, 7}. 3. Himpunan Ekuivalen. Himpunan dapat dikatakan Ekuivalen apabila himpunan-himpunan tersebut memiliki banyak anggota yang sama. Contoh himpunan ekuivalen: K (2,4,6,8) dan L (p,q,r,s) Maka n(K) = 4 dan n(L) = 4.
2buah himpunan yang tidak kosong bisa juga dikatakan saling lepas jika kedua himpunan tersebut tidak mempunya anggota yang sama dalah satu pun. Himpunan lepas dilambangkan dengan ialah "//". misalnya: Himpuanan A = {1,3,5,6} & himpunan B = {2,4,8,10} Maka A // B, Jika dinyatakan akan memakai diagram Venn: 5.
\n \n \n himpunan berikut yang merupakan dua himpunan yang ekuivalen adalah

20 Tuliskan anggota-anggota yang terdapat di dalam himpunan berikut. a. P adalah himpunan nama presiden Republik Indonesia. b. Q adalah himpunan bilangan genap yang kurang dari 10. c. R adalah himpunan nama pulau besar di Indonesia. d. S adalah himpunan faktor dari 36 yang kurang dari 20. e. T adalah himpunan nama benua. f. U adalah himpunan

dSMnbeC.
  • hqe79o6i9w.pages.dev/148
  • hqe79o6i9w.pages.dev/193
  • hqe79o6i9w.pages.dev/323
  • hqe79o6i9w.pages.dev/52
  • hqe79o6i9w.pages.dev/115
  • hqe79o6i9w.pages.dev/579
  • hqe79o6i9w.pages.dev/798
  • hqe79o6i9w.pages.dev/862
  • hqe79o6i9w.pages.dev/444
  • hqe79o6i9w.pages.dev/730
  • hqe79o6i9w.pages.dev/428
  • hqe79o6i9w.pages.dev/518
  • hqe79o6i9w.pages.dev/406
  • hqe79o6i9w.pages.dev/98
  • hqe79o6i9w.pages.dev/217
  • himpunan berikut yang merupakan dua himpunan yang ekuivalen adalah